6 функций денег. Основы теории стоимости денег во времени. Стандартные функции сложного процента. Взнос на амортизацию единицы

Во время проведения разного рода финансовых расчетов нередко приходится решать задачи как по формированию денежных потоков с заданными характеристиками, так и по определению их стоимости. Чтобы облегчить такие расчеты, стандартизировать их, используют специальные функции сложного процента, отражающие изменения в стоимости денежной единицы за определенный период времени.

1. Накопленная сумма единицы

С помощью данной функции определяется величина будущей стоимости денежной единицы (S ) через определенное количество периодов (n ) при сложном проценте (i ).

Где P – начальная сумма

Пример: получен кредит 800 000,00 руб. сроком на 3 года под 14% годовых с начислением процентов раз в полгода. Необходимо вычислить сумму, которая полежит возврату.
Решение:

2. Накопление единицы за период.

Определяет, насколько возрос сберегательный счет, предполагающий регулярные платежи со стороны вкладчика, на который по истечении каждого периода начислялись проценты.

Где М – размер регулярного платежа.

Пример: необходимо определить будущую стоимость производимых регулярно ежемесячных платежей в размере 1 500,00 руб. в течение 3 лет при ставке 15% и ежемесячном накоплении.
Решение:

3. Фактор фонда возмещения.

Показывает размер взноса, которую необходимо периодически вносить на депозит, чтобы к наступлению определенного времени накопить с помощью сложного процента желаемую сумму.

Пример: определить размер ежемесячного взноса в банк при фиксированной процентной ставке 15% годовых для приобретения квартиры стоимостью 1 000 000,00 через 6 лет.
Решение:

4. Текущая стоимость единицы.

Показывает текущую стоимость суммы, полученной единовременно в будущем.

Пример : какой является текущая стоимость 20 000,00 рублей, которые будут получены по истечении 4-го года при 15% годовых и при годовом начислении процента.
Решение:

5. Текущая стоимость аннуитета.

Показывает стоимость равномерного потока платежей на сегодняшний день (). Первое поступление в этом потоке осуществляется в конце первого периода, а последующие – в конце каждого из последующих периодов.

Для определения стоимости инвестиционного проекта или собственности необходимо определить текущую стоимость денег, которые будут получены через некоторое время в будущем. В условиях инфляции деньги изменяют свою стоимость с течением времени. Основными операциями, позволяющими сопоставить разновременные деньги являются операции накопления (наращивания) и дисконтирования.

Накопление – это процесс приведения текущей стоимости денег к их будущей стоимости при условии, что вложенная сумма будет находиться на счету в течение определенного времени, принося периодически накапливаемый процент.

Дисконтирование – процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

1 функция. Определим будущую стоимость денежной единицы (накопленная сумма денежных единиц)

FV - будущая стоимость денежной единицы,

PV – текущая стоимость денежной единицы,

i – ставка дохода,

n – число периодов накопления в годах.

Задача. Определить какая сумма будет накоплена на счете к концу 3 года, если сегодня положить на счет под 10 % годовых 10 тыс. руб.

2 функция. Текущая стоимость денежной единицы (текущая стоимость реверсии перепродажи)

Задача . Сколько нужно вложить сегодня в инвестиционный проект, чтобы к концу 5 года получить 8 тыс.руб. Ставка дохода 10%.

3 функция. Определение текущей стоимости аннуитета.

Аннуитет – это серия равновеликих платежей (поступлений), отстоящих друг от друга на один и тот же промежуток времени.

Выделяют обычный и авансовый аннуитет. Если платежи осуществляют в конце каждого периода, то аннуитет обычный; если вначале – авансовый.

Формула текущей стоимости обычного аннуитета:

PMT – равновеликие периодические платежи.

Задача. Договор аренды дачи составлен на 1 год. Платежи осуществляются ежемесячно по 1 тыс.руб. Определить текущую стоимость арендных платежей при 12% ставке дисконтирования. n = 12 (число периодов – месяцев).

4 функция. Накопление денежной единицы за период. В результате использования данной функции определяется будущая стоимость серии равновеликих периодических платежей или поступлений.

Задача . Определить сумму, которая будет накоплена на счете, приносящем 12% годовых, к концу 5 года, если ежегодно откладывать на счет 10 тыс.руб.

5 функция. Взнос на амортизацию денежной единицы.

Данная функция является обратной величиной текущей стоимости обычного аннуитета.

Амортизация – это процесс, определяемый данной функцией, и включает проценты по кредиту и оплату основной суммы долга.

Задача. Определить, какими должны быть ежегодные платежи, чтобы к концу 7 года погасить кредит 100 000 руб., выданный под 15% годовых.

Аннуитет может быть как поступлением (входящим денежным потоком), так и платежом (исходящим денежным потоком), по отношению к инвестору. Поэтому данная функция может быть использована в случае расчета величины равновеликого взноса на погашение кредита при известном числе взносов и заданной процентной ставке. Такой кредит называется самоамортизирующийся кредит .

6 функция. Рассматривает фактор фонда размещения и является обратной функции накопления единицы за период.

Для определения величины платежа используется следующая формула:

Задача . Определить, какими должны быть платежи, чтобы к концу 5 года иметь на счете при ставке 12% годовых 100 000 руб.

Теория стоимости денег во времени

По теории стоимости денег во времени одна денежная единица сегодня стоит дороже, чем полученная в будущем.

Весь период до появления будущих доходов денежная единица приносит прибыль или новую стоимость. Сумма денег приписываемая к определенному моменту времени называется денежными потоками. Основной операцией позволяющей сопоставить разновременные деньги являются операции накопления и дисконтирования.

Накопление – это процесс определения будущей стоимости.

Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

На этих двух операциях строится весь финансовый анализ, так как денежная единица рассматривается как капитал.

Задачи накопления наиболее наглядно показаны примерами из области кредитных отношений, при этом используется формула начисления сложного процента.

Одним из основных критериев является процентная ставка (i ) – это отношение чистого дохода к вложенному капиталу. В случае операции накопления – эта ставка называется ставкой дохода на капитал. При дисконтировании называется ставкой дисконта или ставкой дисконтирования.

Суммы денег, получаемые (отдаваемые) регулярно (ежемесячно, ежеквартально, ежегодно) называются аннуитетом - они бывают простые и авансовые, в зависимости от того, в конце или в начале периода они выплачиваются.

Риск – это неопределенность, связанная с инвестициями, т. е. вероятность того, что прогнозируемые доходы от инвестиций окажутся больше или меньше предполагаемых величин.

Финансовые расчеты могут основываться на простом и сложном проценте.

Простой процент – приращение дохода на вложенную сумму денег по единой процентной ставке в течение всего срока.

Сложный процент – приращение дохода на вложенную сумму денег по сумме остатка предыдущего периода времени в течение срока инвестиций или кредита.

Расчет простого процента:

Расчет сложного процента:

FV = PV × (1+ i ) n (2)

PV – текущая стоимость, руб (у.е.);

FV – будущая стоимость, руб (у.е.);

n – период (срок) вклада, лет (мес.).

Таблица 1 - Получение простого и сложного процента

Операции

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Разница в расчетах по простому и сложному проценту заключается в том, что при простом проценте ставка начисляется каждый раз на первоначально – вложенный капитал, при сложном проценте каждое последующие начисление ставки осуществляется в предшествующий период суммы, т. е. идет начисления процента на процент.

Правило 72-х :

Применяется для примерного расчета количества лет, необходимых для увеличения денежной суммы в 2 раза:

n =72 / i (3)

Выделяют шесть функций сложного процента:

    Накопленная сумма денежной единицы

    Текущая стоимость единицы (реверсии)

    Накопление денежной единицы за период

    Фонд возмещения

    Взнос на амортизацию единицы

    Текущая стоимость аннуитета (платежа)

Теперь рассмотрим каждую функцию по отдельности.

      Накопленная сумма денежной единицы

Экономический смысл – показывает, какая сумма будет накоплена на счете к концу определенного периода при заданной ставке дохода, если сегодня положить на счет одну денежную единицу.

При начислении процентов 1 раз в год:

FV = PV × (1+ i ) n (4)

При начислении процентов чаще, чем 1 раз в год:

FV = PV × (1+ i / k ) n × k (5)

i – ставка дисконта, %

n – период (срок) вклада, лет (месяц)

k – число начислений процентов в год

(1+ i ) n – фактор накопленной суммы единицы при ежегодном начислении процентов

(1+i/k) n * k – фактор накопленной суммы денежной единицы при начислении процентов чаще, чем раз в 1 год.

Задача 1: Определить какая сумма будет накоплена на счете к концу 28,5 года, если сегодня положить на счет, приносящий 26 % годовых, 4450 руб. Начисление процентов осуществляется в конце каждого полугодия.

FV = 4 450×(1+0,26/2) 28,5×2 = 4 718 796,94 руб.

      Текущая стоимость единицы

Экономический смысл – показывает, какова при заданной ставке дисконта текущая стоимость одной денежной единицы, получаемой в конце определенного периода времени.

Определяется по формулам:

(6)

(7)

1/(1+ i ) n – фактор текущей стоимости единицы при ежегодном начислении процентов;

1/(1+ i / k ) n × k – фактор текущей стоимости единицы при более частом, чем 1 раз в год начислении процентов.

Задача 2: Определить текущую стоимость 3100 руб., которые будут получены в конце 9-го года при ставке дисконта 9%. Начисление процентов каждый день.

PV= 3 100×1/(1+0,09/365) 9×365 = 1 379,20 руб

      Накопление денежной единицы за период

Экономический смысл – показывает, какая сумма будет накоплена на счете при заданной ставке, если регулярно в течение определенного срока откладывать на счет одну денежную единицу.

Будущая стоимость обычного аннуитета:

(8)

(9)

Будущая стоимость авансового аннуитета:

(10)

(11)

PMT – равновеликие периодические платежи, руб;

((1+ i ) n - 1) / i – фактор накопления денежной единицы за период

Задача 3: Определить сумму, которая будет накоплена на счете, приносящем 34 % годовых к концу 49 месяца, если ежемесячно откладывать на счет 6300 руб. платежи осуществляются: а) в начале месяца; б) в конце месяца.

а)

б)

      Формирование фонда возмещения

Экономический смысл – показывает, сколько нужно откладывать на счет регулярно в течение определенного времени, чтобы при заданной ставке дохода иметь на счете к концу этого срока одну денежную единицу.

Определяется по формулам:

(12)

(13)

i / (1+ i ) n -1 – фактор фонда возмещения.

Задача 4: Определить, какими должны быть платежи, чтобы к концу 9-го года иметь на счете, приносящем 8% годовых, 78 000 руб. платежи осуществляются: а) в конце каждого полугодия; б) в конце каждого квартала.

а)

б)

      Взнос на амортизацию

Экономический смысл – показывает, какими должны быть аннуитетные платежи в счет погашения кредита в одну денежную единицу, выданного при заданной процентной ставке на определенный срок.

Определяется по формулам:

(14)

(15)

–фактор взноса на амортизацию;

Задача 5: Кредит в размере 345 000 рублей выдан на 29 лет под 18% годовых. Определить размер аннуитетных платежей. Погашение кредита осуществляется в конце каждого месяца.

      Текущая стоимость аннуитета

Экономический смысл – показывает, какова при заданной ставке дисконта текущая стоимость серии платежей в одну денежную единицу, поступающих в течение определенного срока.

Определяется по формулам:

1. Обычный аннуитет:

(16)

(17)

2. Авансовый аннуитет:

(18)

(19)

PV - настоящий платеж, руб;

PMT - регулярный периодический платеж, руб;

i – ставка дисконта, %;

k - количество начислений в год (период);

n – период (срок) вклада, лет (месяц);

–фактор текущей стоимости обычного аннуитета;

–фактор текущей стоимости авансового аннуитета

Задача 6: Договор аренды квартиры составлен на 24 месяца. Определить текущую стоимость арендных платежей при 8% ставке дисконтирования. Арендная плата 2550 руб / мес. При условиях:

а) Арендная плата выплачивается в начале квартала;

б) Арендная плата выплачивается в конце каждого квартала.

Решение:

а)

б)

6 ФУНКЦИЙ ДЕНЕЖНОЙ ЕДИНИЦЫ. ФОРМУЛЫ СЛОЖНЫХ ПРОЦЕНТОВ

Теория изменения стоимости денег исходит из предположения, что деньги , являясь специфическим товаром, со временем меняют свою стоимость и, как правило, обесцениваются. Изменение стоимости денег происходит под влиянием ряда факторов, важнейшими из которых можно назвать инфляцию и способность денег приносить доход при условии их разумного инвестирования в альтернативные проекты. Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Накопление – это процесс приведения текущей стоимости денег к их будущей стоимости, при условии, что вложенная сумма удерживается на счету в течение определенного времени, принося периодически накапливаемый процент.

Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

Аннуитетные платежи (PMT) – это серия равновеликих платежей (поступлений), отстоящих друг от друга на один и тот же промежуток времени. Выделяют Если платежи осуществляются в конце каждого периода, то аннуитет обычный, если в начале – авансовый.

Текущая стоимость (PV) (англ. Present value) - исходная сумма долга или оценка современной величины денежной суммы, поступление которой ожидается в будущем, в пересчете на более ранний момент времени.

Будущая стоимость (FV) (англ. Future value) - сумма долга с начисленными процентами в конце срока.

Ставка дохода или процентная ставка (i) (англ. Rate of interest) - является относительным показателем эффективности вложений (норма доходности), характеризующим темп прироста стоимости за период.

Срок погашения долга (n ) (англ. Number of periods) - интервал времени, по истечении которого сумму долга и проценты нужно вернуть. Срок измеряется числом расчетных периодов, обычно равных по длине (например, месяц, квартал, год), в конце которых регулярно начисляются проценты.

Частота накоплений в год (k) - периодичность начисления процентов оказывает влияние на величину накопления. Чем чаще начисляются проценты, тем больше накопленная сумма.

ОБОЗНАЧЕНИЯ К ФОРМУЛАМ

FV – будущая стоимость денежной единицы;

PV – текущая стоимость денежной единицы;

PMT – равновеликие периодические платежи;

i – ставка дохода или процентная ставка;

n – число периодов накопления, в годах;

k – частота накоплений в год.

6 ФУНКЦИЙ ДЕНЕЖНОЙ ЕДИНИЦЫ

Формула сложных процентов - 1 функция

Будущая стоимость денежной единицы (FV) – накопленная сумма денежной единицы. Накопленная сумма денежной единицы показывает, какую сумму будет составлять денежная единица, вложенная сегодня, через определенный период времени при определенной ставке дисконта (доходности).

Начисление процентов 1 раз в год: FV = PV * [(1+ i ) n ] или FV = PV *

Начисление процентов чаще, чем один раз в год: FV = PV * [(1+ i / k ) nk ]

Формула сложных процентов - 2 функция

Текущая стоимость денежной единицы (P V) или текущая стоимость реверсии (перепродажи) показывает, какую сумму нужно иметь сегодня, чтобы через определенный период времени при определенной ставке дисконта (доходности) получить сумму, равную денежной единице, то есть какой сумме сегодня эквивалентна денежная единица, которую мы рассчитываем получить в будущем через определенный период времени.

Начисление процентов 1 раз в год: PV = FV * или PV = FV *

Начисление процентов чаще, чем один раз в год: PV = FV *

Формула сложных процентов - 3 функция

Текущая стоимость аннуитета показывает, какой сумме денежных средств сегодня эквивалентна серия равномерных платежей в будущем, равных одной денежной единице, за определенное количество периодов при определенной ставке дисконта.

Выделяют обычный и авансовый аннуитеты. Если платежи осуществляются в конце каждого периода, то аннуитет обычный, если в начале – авансовый.

Обычный аннуитет:

Начисление процентов 1 раз в год:

Начисление процентов чаще, чем один раз в год:

Авансовый аннуитет:

Формула сложных процентов - 4 функция

Основой финансовой математики являются следующие шесть функций

сложного процента (или шесть функций денег):

1. Будущая стоимость единицы (накопленная сумма единицы) – FV (Future value ).

2. Будущая стоимость аннуитета (накопление единицы за период) – FVA (Future value of an annuity ).

3. Фактор фонда возмещения (периодический взнос в фонд накопления) – SFF (Sinking fund factor ).

4.Текущая стоимость единицы (дисконтирование, реверсия) – PV (Present value ).

5.Текущая стоимость аннуитета – PVA (Present value of annuity ).

6.Взнос на амортизацию единицы – IAO (Installment of amortize one ).

Эти функции используются в различных финансовых расчетах. Рассмотрим каждую из этих функций с точки зрения ее математической формулировки и сферы применения.

Функции наращения

Будущая стоимость денежной единицы (накопленная сумма единицы)

Данная функция позволяет определить будущую стоимость инвестированной денежной единицы, исходя из предполагаемых: ставки дохода (r), срока накопления (n) и периодичности (частоты) начисления процента (m):

FV = PV * (1+ r)n = PV * FМ1(r, n),

где FV – будущая стоимость денег;

PV – текущая стоимость денег;

r – ставка дохода;

n – число периодов накопления.

FМ1(r, n) = (1+ r)n – мультиплицирующий множитель, значения которого рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах. Иногда его обозначают как FVIF (от англ. Future Value Interest Factor – процентный множитель будущей стоимости).

Экономический смысл множителя FМ1(r, n) состоит в том, что он показывает, чему будет равна одна денежная единица через (n) периодов при заданной процентной ставке (r). Справедливость формулы очевидна (рисунок 6.7).

Если на депозит положена сумма PV, то через один период начисления эта сумма станет равна:

FV1= PV + PV * r = PV * (1 + r),

через два периода она станет равна:

FV2= FV1+ FV1* r = FV1* (1+ r) = PV (1 + r)2,

FVn= FVn−1 + FVn−1* r = FVn−1* (1+ r) = PV (1 + r)n.

Рисунок 6.7 – Будущая стоимость денежной единицы

Пример. $1000 вложено в банк под 10 % годовых. Какая сумма накопится на счете через 5 лет? 10% переводим в относительные единицы, для этого делим их на 100% и получаем 10% / 100% =0,1.

FV5= 1000 (1+ 0,1)5= 1610,5.

Правило 72-х. Иногда при расчетах приходится сталкиваться с задачей определения количества периодов начисления, по истечении которых первоначально депонированная сумма увеличивается вдвое. Очень просто решить эту задачу позволяет известное «Правило 72-х», согласно которому – количество периодов, необходимое для удвоения первоначальной суммы вычисляется по формуле:

n = 72 / r .

Данное правило позволяет получить точные результаты при значениях r: 3% < r < 18%. Срабатывает правило и в обратном порядке для определения ставки дохода, при которой депонированная сумма удвоится.

Например, при ставке 6% годовых сумма удвоится за 72 / 6 = 12 лет.

Более частое, чем один раз в год, начисление процентов. Приведенные выше расчеты основывались на том предположении, что начисление процентов происходит один раз в год. Однако аккумулирование может происходить не только раз в год, но и чаще, например раз в квартал, раз в месяц и т. д. В этом случае необходимо ставку процента разделить на частоту накопления в течение года (m), а число лет накопления (n) умножить на частоту накопления в течение года (m). Формула расчета будет выглядеть следующим образом:

FV = PV (1 + r/m)n*m,

где m – частота начисления процентов в год;

n – число лет, в течение которых происходит накопление.

Чем чаще начисляются проценты, тем больше накопленная сумма. Приведенное преобразование справедливо в отношении всех шести функций.

6.2.1.2. Будущая стоимость аннуитета (накопление единицы за период)

Данная функция показывает, какой будет стоимость серии равных

платежей величиной (А) по истечении установленного срока их наращения (n) (рисунок 6.8).

Рисунок 6.8 – Будущая стоимость аннуитета постнумерандо

Из рисунка 6.8 видно, что будущая стоимость исходного денежного потока (аннуитета) постнумерандо (FVАpst) может быть оценена как сумма наращенных поступлений.

Очевидно, что будущая стоимость последнего платежа совпадает с величиной самого платежа, т.к. отсутствует период наращения:

Будущая стоимость предпоследнего платежа будет наращена за один период и составит:

Аналогично наращиваются все платежи. Будущая стоимость первого платежа будет наращена за (n-1) периодов и составит:

FVn-1= А·(1+r) n-1.

Их общую сумму можно выразить как:

FVАpst = А·(1+r)n-1+ А·(1+r)n-2+ ...+ А·(1+r) + А

Вынесем (А) за знак скобки и обозначим (1+r) через (q). Получим выражение:

FVА = А·(qn-1+ qn-2+ ...+ q + 1).

Теперь отчетливо видно, что многочлен, содержащийся в скобках, называемый мультиплицирующий множитель и обозначаемый (FМ3(r, n)), представляет собой сумму членов геометрической прогрессии (S), но записанной в обратном порядке:

S = 1 + q + q2… + qn-2+ qn-1

Умножим обе части этого уравнения на (q) и получим:

S·q = q + q2… + qn-1+ qn

Вычтя из полученного уравнения предыдущее, получим:

S·q – S = qn–1.

S = (qn– 1) / (q – 1)

Теперь, подставив вместо (q) его значение (1+r), получаем формулу расчета мультиплицирующего множителя:

FМ3(r, n) = S = ((1+r)n– 1)/r

Следовательно, выражение для будущей стоимости обычного аннуитета величиной (А) за (n)периодов будет иметь вид:

FVАpst = А·FМ3(r, n) = А·((1+r)n– 1)/r).

Данный мультипликатор еще называют - процентный множитель будущей стоимости аннуитета FVIFA(r, n) – Future Value Interest Factor of Annuity. Экономический смысл мультиплицирующего множителя заключается в том, что он показывает, чему будет равна суммарная величина срочного (на определенный срок) накопленного аннуитета величиной в одну денежную единицу к концу срока его действия.

Поскольку значения множителя (FМ3(r, n)) зависит лишь от (r) и (n), то они рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах.

Пример. Если вкладывать ежегодно $900 на счет в банке под 10% годовых, сколько накопится на нем через 5 лет?

FVА5= 900·((1+0,1)5− 1) / 0,1) = 5494,59

Теперь рассмотрим случая авансового аннуитета (рисунок 6.9).

Как и в случае обычного, рассмотрим накопленные суммы в конце первого, второго... n -го периода:

FV1= А·(1+r) ,

FV2= А·(1+r)2,

…………………………………………….……….

FVn= А· (1+r)n

FVАpre = А·(1+r)n+А·(1+ r)n −1+...+ А·(1+r)2+ А·(1+r).

Рисунок 6.9 – Будущая стоимость авансового аннуитета (пренумерандо)

Сравнив формулы расчета FVАpst и FVАpre, легко убедиться, что

FVАpre = FVАpst (1+ r).

Произведя соответствующее умножение, получим:

FVАpre = FVАpst·(1+ r) = А· ((1+r)n– 1)/r) (1+ r) =

А· ((1+r)n+1– 1 – r)/r) = А· ((1+r)n+1– 1)/r) – 1).

Периодические депозиты могут вноситься чаще, чем один раз в год, соответственно чаще накапливается процент. При этом количество начислений увеличится в m раз и составит (n·m), а ставка уменьшится в m раз и составит (n/m). Тогда ранее полученная формула примет вид:

FVАn= А·(((1+r/m)(n+1)m– 1)/r/m) – 1).

Чем чаще делаются взносы, тем больше накопленная сумма.

Пример. Если вкладывать ежемесячно $75 на счет в банке под 10 % годовых, сколько накопится на нем через 5 лет?

FVА5= 75 (((1+0,1/12) 5·12– 1) / 0,1/12 = 5807,78.

Фактор фонда возмещения

Данная функция позволяет рассчитать величину периодического платежа (А или SFF, как его в таком случае называют), необходимого для накопления нужной суммы (FVА) по истечении (n)платежных периодов при заданной ставке процента (r) (рисунок 6.10).

Рисунок 6.10 – Периодический взнос в фонд накопления

Из формулы будущей стоимости аннуитета (FVА = А·FМ3(r, n)) следует, что величина каждого платежа (SFF или А) в случае обычного аннуитета вычисляется следующим образом:

SFFpst = Аpst = FVА / FМ3(r, n) = FVА·r/((1 + r)n− 1) = FVА·FМ5(r, n) .

где FМ5(r, n) = r/((1 + r)n− 1) – мультиплицирующий множитель, значения которого рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах.

Экономический смысл множителя FМ5(r, n) состоит в том, что он показывает величину периодических платежей необходимых для накопления одной денежной единицы через (n) периодов.

Пример. Необходимо за 4 года скопить $1000 при ставке банка 10%. Сколько придется вкладывать каждый год?

SFF = 1000 (0,1 / ((1 + 0,1)4− 1) = 215,47.

В случае авансового фонда возмещения (соответствующего авансовому аннуитету) формула единичного платежа (SFFpre) имеет вид:

SFFpre = FVА·r/((1 + r)(n+1)− 1− r).

Функции дисконтирования