Колориметрические методы лабораторная пм 05. Анализ колориметрическими методами. Метод колориметрического титрования

Колориметрия - один из наиболее простых методов абсорбционного анализа. Он основан на изменении оттенков цвета исследуемого раствора в зависимости от концентрации. Колориметрические методы можно разделить на визуальную колориметрию и фотоколориметрию.

Визуальная колориметрия

Она осуществляется за счет стандартных серий. Для этого исследуемый раствор сравнивают с набором стандартных растворов, которые должны быть свежеприготовленными и отличаться друг от друга не менее чем на 10-15 %.

Например, колориметрическое определение pH по Алямовскому основано на свойстве индикаторов изменять свою окраску в зависимости от концентрации ионов водорода, присутствующих в растворе.

Шкала прибора Алямовского представляет собой ряд запаянных пробирок, заполненных окрашенным раствором. Этот устойчивый к действию света раствор имитирует окраску универсального индикатора при определенном значении pH. Испытуемый раствор сравнивают со шкалой и находят в ней пробирку, наиболее совпадающую с ним по цвету. Если окраска жидкости не соответствует цвету растворов шкалы, то берут среднее значение между двумя приближающимися по цвету пробирками. Иногда может встретиться набор Алямовского, в котором стандартная цветная шкала представлена не ампулами с растворами, а стеклянными пластинками с цветными пленками.

Для удобства сравнения к прибору прилагается компаратор, но техника сравнения растворов со шкалой в этом случае другая. Пробирку с окрашенным испытуемым раствором нужно поместить в левое гнездо компаратора. В пробирку из правого гнезда компаратора наливают 5 мл дистиллированной воды. В пазы компаратора вставляют стандартную цветную шкалу, при этом ее окрашенная часть должна находиться против пробирки с дистиллированной водой, а бесцветная - против испытуемого раствора. Компаратор берут левой рукой и поднимают до уровня глаз, держа шкалой от себя и повернув ее к свету. Передвигая стандартную шкалу вверх и вниз, находят ту ее часть, которая по окраске совпадает с испытуемым раствором. Повернув компаратор шкалой к себе, отсчитывают значение pH и записывают результат анализа.

Фотоколориметрия

Фотоколориметрические методы - одна из широко используемых разновидностей абсорбционного оптического анализа. Для более точного определения анализируемого элемента применяют специальные приборы - фотоэлектроколориметры (ФЭК).

При работе на ФЭК чаше всего используют метод градуировочной кривой, основанный на построении калибровочного графика в осях «оптическая плотность - концентрация» для стандартных растворов известной концентрации. Измерив оптическую плотность анализируемого раствора, по графику находят его концентрацию. Для лучшего усвоения фотоколориметрического метода студентам предлагается провести лабораторный анализ определения ионов меди и никеля в растворе этим методом на КФК-3-01.

Лабораторная работа 1

ОПРЕДЕЛЕНИЕ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ В РАСТВОРЕ ФОТОКОЛОРИМЕТРИЧЕСКИМ МЕТОДОМ

Цель работы: научится работать на фотоколориметре КФК-3-01. Определить содержание ионов тяжелых металлов на КФК-3-01.

Порядок работы на фотометре КФК-3-01.

Закрыть крышку кюветного отделения. Включить тумблер «Сеть». По истечении 30 мин приступить к работе. Установить необходимую длину волны.

  • 1. Установку длин волн необходимо выполнять подводкой со стороны коротких длин волн к более длинным. Если при установке значение длины волны превысило требуемое, необходимо вновь вернуться на 20-30 Нм к более коротким волнам и повторно подвести к требуемому значению.
  • 2. Взять две кюветы. В одну налить дистиллированную воду, а в другую - исследуемый раствор. Кюветы заполняются до метки с боковой стороны. На наружной поверхности кюветы не должно быть капель.
  • 3. Установить кюветы в кюветное отделение. Кювету с «холостой пробой» установить в дальнее гнездо кюветодержателя. Ручку перемещения кювет установить в крайнее левое положение. Закрыть крышку кюветного отделения.
  • 4. Клавишей «Д» или «С» выбрать режим измерения. Нажать клавишу «#». На нижнем индикаторе, на верхней строке будет надписано «Градуировка» через 3-5 с. Надпись исчезнет и появится «Изменение», а на нижней строке - результат измерения. Ручку перемещения кювет установить вправо. На нижней строке появится результат измерения (оптическая плотность исследуемого раствора).

Задание 1. Определения содержания Си++ в растворе фотоколори-метрическим методом.

Оборудование и реактивы: фотометр КФК-3-01, кювета 3 см, колбы мерные емкостью 50 мл, пипетки 5,10 мл, стандартный раствор Си ++ - 0,5 мг/мл, раствор аммиака 1:1.

Методика эксперимента

1. Выбор длины волны.

В мерную колбу емкостью 50 мл внести 14 мл стандартного раствора Си +2 , добавить 15 мл аммиака и довести водой до метки. Перемешать и замерить оптическую плотность раствора /) от длины волны X. Заполнить табл. 1. В качестве оптимальной принимается та длина волны Х 0 , при которой величина оптической плотности максимальна для данного раствора (рис. 1).

Рис. 1. Зависимость оптической плотности Э от длины волны X

2.

В мерных колбах емкостью 50 мл приготовить 5-6 растворов Си - ^ с различным содержанием от 1 до 7 мг/мл. Объем каждого раствора 15 мл. В каждую колбу добавить 15 мл аммиака и довести водой до метки. Перемешать и замерить оптическую плотность И при выбранной длине волны Х 0 . Заполнить табл. 2 и построить график зависимости оптической плотности?) от концентрации раствора С (рис. 2).

3. Определение содержания Си +2 в контрольном растворе.

В колбу с контрольным раствором добавить 10 мл воды, 15 мл аммиака. Водой довести до метки и перемешать. Замерить оптическую плотность раствора. По калибровочному графику (рис. 2) определить С 0 - содержание Си +2 в растворе.

4. Сделать выводы по работе.

Задание 2. Определение содержания №+2 в растворе фотоколори-метрическим методом.

Оборудование и реактивы: фотометр КФК-3-01, кювета 3 см, колбы мерные емкостью 50 мл, пипетки 5,10 мл, стандартный раствор 1Ч1 ++ - 0,01 мг/ мл, 1%-ный спиртовой раствор диметилглиоксима, йодная вода, раствор аммиака 1:1.

Методика эксперимента

1. Выбор длины волны.

В мерную колбу емкостью 50 мл внести 10 мл стандартного раствора № , добавить 5 мл йодной воды, 6 мл аммиака и 2 мл диметилглиоксима. Довести водой до метки, перемешать. Через 5-7 мин замерить оптическую плотность раствора при различных длинах волн. Заполнить табл. 1. Построить график зависимости оптической плотности раствора?> от длины волны X. В качестве оптимальной принимается та длина волны 7. 0 , при которой величина оптической плотности максимальна для данного раствора (см. рис. 1).

2. Построение калибровочного графика.

В мерных колбах емкостью 50 мл приготовить 5-6 растворов № +2 с различным содержанием от 0,01 до 0,1 мг/мл. Объем каждого раствора 10 мл. Затем в каждую колбу добавить реактивы, как указано в п. 1. Довести водой до метки, перемешать. Через 5-7 мин замерить оптическую плотность раствора при выбранной длине волны. Заполнить табл. 2 и построить график зависимости оптической плотности О от концентрации раствора С (см. рис. 2).

3. Определение содержания № +2 в контрольном растворе.

В колбу с контрольным раствором добавить 10 мл воды, а затем добавить реактивы, как указано в п. 1. Замерить /) 0 - оптическую плотность раствора. По калибровочному графику (рис. 3) С () определить С 0 - содержание № +2 в растворе.

4. Сделать выводы по работе.

Таблица 1

(Филин В.А. Видеоэкология. Что для глаза хорошо, а что - плохо. М.: Видеоэкология, 1997).

Лабораторная работа №1

Тема: ОСОБЕННОСТИ МЕТОДОВ АНАЛИЗА И ВЫПОЛНЯЕМЫХ ОПЕРАЦИЙ. ОТБОР И ХРАНЕНИЕ ПРОБ

Цель: Изучить методы анализа проб воды на судне, отбор и хранение проб.

Особенности методов анализа и выполняемых операций

При использовании судовой экспресс-лаборатории СЛКВ пробы воды анализируются различными методами (см. табл. 1). При аналитическом химическом контроле пробы воды анализи­руются визуальным, визуально-колориметрическим, фотоколориметрическим, титриметрическим методами.

Таблица 1.1

Правила консервации и хранения проб

Наименование показателя Материал, из которого изготовлена ёмкость для отбора и хранения проб Метод консервации Макси­мальный срок хранения пробы с момента отбора Примечание
Водород­ный показа­нии. (pH) -- 6 час Определение предпочтительнее проводить на месте отбора проб
Железо общее Полимерный материал или боросиликатное стекло Подкисление соляной кислотой до pH <2 1 мес. Рекоменду­ется опреде­лять сразу после опре­деления неустойчивых показателей
Жёсткость общая Полимерный материал или стекло 24 час Допускается хранение в течение 48 час
Масло и нефтепродукты Стекло Экстракция ЧХУ на месте отбора пробы Добавление 2-4 мл ЧХУ на 1 л пробы. Объем добав­ленного ЧХУ учитывается при проведе­нии экстрак­ции. 24 час Емкость перед отбором проб должна быть промыта ЧХУ.
Фосфаты (полифосфаты) Полимерный материал или стекло Добавление 2-4 мл хлороформа на 1 л пробы 24 ч Охлаждение до 2-5 °С
Хлор остаточный Полимерный материал или стекло Определение следует проводить как можно скорее
Хлорид- анионы Полимерный материал или стекло 1 мес. Охлаждение до 2-5°С Хранение в тёмном месте.
Щёлочность Полимерный материал или стекло Охлаждение до 2-5°С 24 ч
Запах Стекло Охлаждение до 2-5°С 6 час
Цветность Полимерный материал или стекло Охлаждение до 2-5°С и хранение в темном месте 24 час Допускается определение на месте отбора проб
Мутность Полимерный материал или стекло 24 час Предпочти­тельнее проводить определение на месте отбора проб
Привкус Стекло Определение проводят при отсутствии подозрений на бактери­альное загрязнение и отсутствии вредных веществ в опасных концентрациях
Удельная электропроводность Полимерный материал или стекло Охлаждение до 2-5°С 24 ч Предпочти­тельнее проводить определение на месте отбора проб

Таблица 1.2

Поправочные множители для условий отбора проб без использования охладителей

Давление в котле, кг/см 2 Поправочный множитель «К» Давление в котле, кг/см 2 Поправочный множитель «К»
0,92 0,69
0,88 0,67
0,85 0,66
0,83 0,65
0,81 0,64
0,79 0,63
0,77 0,62
0,75 0,61
0,74 0,60
0,72 0,59
0,71 0,58
0,70 0,57

С ОФ = С колор х К = 50 х 0,79 = 39,5 мг/л

Вопросы для самоконтроля:

1. Методы анализа проб воды на судне.

Анализ визуальным методом

Визуальный метод анализа (оценки) - метод, основанный на получении информации невооруженным глазом либо с ис­пользованием оптических приборов (микроскопа, лупы). Визу­альные методы относятся к органолептическим методам анализа.

Визуальный анализ воды (мутность, прозрачность) прово­дится при помощи градуированной стеклянной трубки и образца шрифта или юстировочной метки (рис.4) и основан на визуаль­ном зрительном наблюдении объек4та (шрифта или метки) сквозь водяной столб при направленном достаточном освещении. Таким образом, определяют прозрачность воды в см - высота водяного столба, сквозь которую различим объект (шрифт или метка). За­тем по градуировочному графику, который представляет собой кривую зависимости мутности и прозрачности воды, определяют мутность воды в единицах мутности ЕМ/л (ЕМФ) (по фармазину) или мг/л (по каолину).

Анализ колориметрическими методами

Колориметрический метод анализа основан на изменении поглощения света веществом, определении концентрации веще­ства по интенсивности окраски растворов.

Определяемый компонент при помощи химико-аналитической реакции переводят в окрашенное соединение, после чего измеряют интенсивность окраски полученного раствора либо сравнивают интенсивность окраски исследуемого раствора с окраской стандартного раствора и им плёночной контрольной шкалы. Интенсивность окраски является мерой концентрации анализируемого вещества. Если окраска пробы оценивается визуально, такой метод называется визуально-колориметрическим. При измерении интенсивности окраски проб с помощью прибора - фотоколориметра - метод называется фотоколориметрическим.

При выполнении анализа визуально-колориметрическим методом (pH, железо общее, жёсткость общая, фосфаты, цветность) определение проводится в колориметрических пробирках или склянках.

Колориметрические пробирки представляют собой обыч­ные, широко используемые в лабораториях пробирки из бесцветного стекла диаметром 11-15 мм. Колориметрические про­бирки и склянки могут иметь метки («5 мл», «10 мл»), показывающих объём в миллилитрах и, следовательно, уровень, до которого следует наполнить пробирку или склянку пробой, чтобы обеспечить необходимые условия визуального колориметрирования. Колориметрические пробирки и склянки для колориметрирования имеют одинаковую форму и диаметр, т.к. от этих параметров зависит высота слоя окрашенного раствора и, следовательно, интенсивность окраски.

Наиболее точные результаты при анализе визуально-колориметрическим методом достигаются, если сравнивать и риску пробы с окраской модельных растворов.


Визуальное колориметрирование пробы проводят, распола­гая колориметрическую склянку или пробирку на белом поле контрольной шкалы и, освещая склянку рассеянным белым све­том достаточной интенсивности, наблюдают окраску раствора сверху (рис. 1.1).

Рис. 1.1. Проведение визуально-колориметрического определения по контрольной плёночной шкале с применением колориметрической пробирки (а) и колориметрической склянки (б), по шкале растворов-имитаторов (в).

За результат анализа при визуальном колориметрировании принимают значение концентрации эталонного раствора или образца окраски контрольной шкалы, наиболее близкого к окраске пробы анализируемой воды.

Интенсивность окраски растворов можно измерять различными методами. Различают субъективные (или визуальные) методы колориметрии и объективные (или фото колориметрические).

Визуальными называются такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом.

При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах - фотоколориметрах, откуда и метод получил название фотоколориметрического.

Визуальные методы. К визуальным методам относятся:

1) метод стандартных серий;

2) метод дублирования (колориметрическое титрование);

3) метод уравнивания.

Метод стандартных серий. При выполнении анализа методом стандартных серий интенсивность окраски анализируемого окрашенного раствора сравнивают с окрасками серии специально приготовленных стандартных растворов (при одинаковой толщине слоя).

Колориметрическое титрование (метод дублирования). Этот метод основан на сравнении окраски анализируемого раствора с окраской другого раствора - контрольного. Для приготовления контрольного раствора готовят раствор, содержащий все компоненты исследуемого раствора, за исключением определяемого вещества, и все употреблявшиеся при подготовке пробы реактивы, и к нему добавляют из бюретки стандартный раствор определяемого вещества. Когда этого раствора будет добавлено столько, что интенсивности окраски контрольного и анализируемого раствора уравняются, считают, что в анализируемом растворе содержится столько же определяемого вещества, сколько его было введено в контрольный раствор.

Метод уравнивания. Этот метод основан на уравнивании окрасок анализируемого раствора и раствора с известной концентрацией определяемого вещества - стандартного раствора.

Существуют два варианта выполнения колориметрического определения этим методом.

По первому варианту уравнивание окрасок двух растворов с разной концентрацией окрашенного вещества проводят путем изменения толщины слоев этих растворов при одинаковой силе проходящего через растворы светового потока. При этом, несмотря на различие концентраций анализируемого и стандартного растворов, интенсивность светового потока, проходящего через оба слоя этих растворов, будет одинакова.

Соотношение между толщинами слоев и концентрациями окрашенного вещества в растворах в момент уравнивания окрасок будет выражаться уравнением:

где - толщина слоя раствора с концентрацией окрашенного вещества ; - толщина слоя раствора с концентрацией окрашенного вещества .

В момент равенства окрасок отношение толщин слоев двух сравниваемых растворов обратно пропорционально отношению их концентраций.

На основании приведенного уравнения, измерив толщину слоев двух одинаково окрашенных растворов и зная концентрацию одного из этих растворов, легко можно рассчитать неизвестную концентрацию окрашенного вещества в другом растворе.

Для измерения толщины слоя, через который проходит световой поток, можно применять стеклянные цилиндры или пробирки, а при более точных определениях специальные приборы - колориметры.

По второму варианту, для уравнивания окрасок двух растворов с различной концентрацией окрашенного вещества, через слои растворов одинаковой толщины пропускают световые потоки различной интенсивности.

В этом случае оба раствора имеют одинаковую окраску, когда отношение логарифмов интенсивностей падающих световых потоков равно отношению концентраций.

В момент достижения одинаковой окраски двух сравниваемых растворов, при равной толщине их слоев, концентрации растворов прямо пропорциональны логарифмам интенсивностей падающего на них света.

По второму варианту определение может быть выполнено только с помощью колориметра.

Фотоколориметрические методы. Все фотоколориметрические методы определения основаны на одном общем принципе. Световой поток проходит через кювету или пробирку, наполненную испытуемым окрашенным раствором. Прошедший через раствор световой поток воспринимается фотоэлементом, в котором световая энергия превращается в электрическую. Возникающий при этом электрический ток измеряют при помощи чувствительного гальванометра. Как показал А. Г. Столетов, сила электрического тока, возникающего при действии световой энергии на фотоэлементу прямо пропорциональна интенсивности освещения.

Для определения этим методом концентрации исследуемого вещества измеряют оптическую плотность испытуемого раствора и эталонного раствора, концентрация которого известна . Расчет проводят по формуле:

Основными преимуществами фотоколориметрических методов измерения интенсивности окраски являются быстрота и легкость определений при высокой их точности.

Нашей промышленностью выпускаются фотоколориметры марки ФЭК-М, в которых интенсивности световых потоков измеряются с помощью селеновых фотоэлементов. Действие прибора основано на принципе уравнивания интенсивности двух световых потоков при помощи щелевой диафрагмы. Подробное изложение конструкции прибора и порядок работы на нем даются в прилагаемых к прибору паспорте и инструкции.

Построение калибровочной кривой. При массовых фотоколориметрических анализах, определяя концентрацию испытуемого раствора, не сравнивают каждый раз его светопоглощение со светопоглощением эталонного раствора, а предварительно строят так называемую калибровочную кривую. Для этого пользуются серией эталонных растворов различной концентрации. Имея такую кривую, при определении концентрации испытуемого раствора достаточно измерить его светопоглощение и по калибровочной кривой найти величину концентрации, соответствующую найденному светопоглощению.

Для построения калибровочной кривой нужно приготовить серию эталонных растворов, содержащих разные количества определяемого вещества. Сначала приготовляют стандартный раствор, содержащий строго определенное количество исследуемого вещества. С помощью бюретки отбирают в мерные колбы емкостью различные, точно измеренные объемы этого стандартного раствора и соответствующих реактивов, вызывающих окраску анализируемого раствора. Затем содержимое каждой мерной колбы разбавляют дистиллированной водой, доводя объем раствора до метки.

С помощью фотоколориметра измеряют оптические плотности приготовленных эталонных растворов и результаты измерений записывают в виде таблицы.

Пример такой записи приведен ниже:

На основании полученных результатов строят кривую зависимости оптической плотности раствора от его концентрации. Это и есть калибровочная кривая (рис. 91).

Рис. 91. Зависимость оптической плогности раствора от концентрации (калибровочная кривая).

Для ее построения на миллиметровой бумаге откладывают по оси абсцисс значения концентраций эталонных растворов, а по оси ординат - величины их оптических плотностей. Затем из точек, найденных на осях, восстанавливают перпендикуляры, и точки их пересечения соединяют одной линией.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения и социального развития РФ

Министерство Здравоохранения Оренбургской области

ГАОУ СПО «Оренбургский областной медицинский колледж»

Реферат на тему

«Колориметрические методы анализа. Общая характеристика. Примеры определения»

Пушишина Анастасия Константиновна

Оренбург 2012

1 .Определение колориметрии

3. Примеры определений

1. Определение колориметрии

Колориметрия (от лат. color -- цвет и греч. мефсю -- измеряю) -- физический метод химического анализа, основанный на определении концентрации вещества по интенсивности окраски растворов (более точно -- по поглощению света растворами).

Колориметрия -- это метод количественного определения содержания веществ в растворах, либо визуально, либо с помощью приборов, таких как колориметры.

колориметрия фотометрия свет спектроколориметрия

2. История возникновения колориметрии и фотометрии

Один из первых колориметров, созданный французским оптиком Жюлем Дюбоском, 1980.

Любопытная история возникновения колориметрии и фотометрии. Ю. А. Золотов упоминает, что Роберт Бойль (так же, как и некоторые ученые до него) использовал экстракт дубильных орешков, чтобы различить железо и медь в растворе. Однако, по-видимому, именно Бойль впервые заметил, что чем больше железа содержится в растворе, тем более интенсивна окраска последнего. Это был первый шаг к колориметрии. А первым инструментом колориметрии стали колориметры типа колориметра Дюбоска (1870), которые использовались вплоть до недавнего времени.

Более совершенные приборы -- спектрофотометры -- отличаются возможностью исследования оптической плотности в широком диапазоне длин волн видимого спектра, а также в ИК и УФ-диапазонах, с меньшей дискретностью длины волны (с использованием монохроматора).

Фотоколориметры и спектрофотометры измеряют величину пропускания света при определенной длине волны света. Контроль (обычно дистиллированная вода или исходный материал без добавления реагентов) используется для калибровки устройства.

Колориметрия широко применяется в аналитической химии, в том числе для гидрохимического анализа, в частности -- для количественного анализа содержания биогенных веществ в природных водах, для измерения pH, в медицине, а также в промышленности при контроле качества.

Фотоколориметрия -- количественное определение концентрации вещества по поглощению света в видимой и ближней ультрафиолетовой области спектра. Поглощение света измеряют на фотоколориметрах или спектрофотометрах.

3. Примеры определений

Колориметрические методы основываются на фотометрическом сравнении густоты окраски исследуемого раствора, рассматриваемого в пропущенном свете, с окраской нормального раствора, содержащего определенное количество этого красящего вещества, или же с окраской некоторой эмпирически подобранной окрашенной середины, принятой за норму. В основе К. лежат следующие положения:

1) светопоглощающая сила раствора окрашенного вещества в бесцветном растворителе растет пропорционально концентрации и толщине слоя жидкости, следовательно:

2) если приготовить два раствора разной концентрации того же красящего вещества в том же бесцветном растворителе, и найти такой толщины слои их, что рассмотренные в пропущенном свете они дадут одну силу света и окраски, то толщины этих слоев обратно пропорциональны содержанию в них красящего вещества. Всякое фотометрическое сравнение сводится к определению условий, при которых наступает равенство двух освещений, поэтому и в К., рассматривая свет, прошедший через слой нормальной жидкости, и свет, проходящий через слой исследуемой жидкости, мы меняем эти слои до тех пор, пока не получим равенства в силе пропущенного света. Так как поглощение окрашенными растворами лучей разного цвета (различной длины волны) растет неодинаково с увеличением содержания красящего вещества, то лишь при равенстве в силе пропущенного света наступит и равенство окраски; при невыполнении первого условия, цвета растворов будут слегка другие.

Довести два слоя раствора до равенства поглощения света можно: 1) добавляя при постоянной толщине слоя в один из них бесцветного растворителя до тех пор, пока сила пропущенного света и окраска его не будут одинаковы; по количеству прибавленного растворителя можно легко рассчитать отношение концентрации исследуемого раствора и нормального; 2) удлиняя более слабо окрашенный слой жидкости до тех пор, пока поглощение света двумя слоями раствора не будет одинаково; тогда обратное отношение высот слоев жидкости даст отношение их концентрации.

По первому методу, теоретически более совершенному, был устроен один из первых колориметров, а именно колориметр Гутон-Лабильярдьера, построенный Саллероном. Он представлял зачерненный внутри деревянный ящик, в одной из боковых стенок которого прорезаны были две щели, освещенные извне светом, отраженным от зеркала. За щелями стоят две одинаковой толщины кюветки с плоскими стеклянными стенками; в одной из них находится нормальная жидкость определенной концентрации, в другой исследуемый раствор. В противоположной стенке прорезаны отверстия для глаз наблюдателя, в поле зрения которого видны две окрашенные щели. Прибавляя в более крепкий раствор бесцветного растворителя из градуированной бюретки, наблюдатель стремится достигнуть равенства освещений и окраски щелей; по количеству прибавленного растворителя рассчитывается концентрация раствора. Неудобство этого прибора заключается в самом методе, причина же малой точности даваемых им результатов лежит в его конструкции; действительно, глаз способен легко сравнивать освещение и окраску лишь двух соприкасающихся полей, по мере же удаления их друг от друга трудность сравнения увеличивается. Удобнее колориметры, основанные на 2-м методе, например колориметр Вольфа, один из первых, построенных по этому типу. Он состоит из 2-х стеклянных трубок A и B, деленных на мм, закрытых снизу пришлифованными пластинками и снабженных кранами (фиг. 1).

Свет, идущий от зеркала C, проходит через трубки и, дважды отразившись в стеклянных призмах D , выходит двумя смежными пучками из верхней общей плоскости призм. Наблюдатель смотрит через направленную на эту плоскость лупу и видит поле зрения, разделенное линией -- гранью касания двух призм -- на две части; одна половина освещена светом, прошедшим через A , другая через B. В A , положим, наливают до некоторой высоты нормальный раствор, B наполняют исследуемым раствором и выпускают из A и B, посредством кранов, жидкости до тех пор, пока обе половины поля не окажутся одинаковыми и линия раздела не исчезнет. Тогда обратное отношение высот столбов жидкостей в A и B даст отношение их концентраций; для облегчения вычисления высоту столба менее концентрированной жидкости берут равным 100 мм. Дюбоск значительно упростил обращение с прибором, заменив краны двумя массивными стеклянными цилиндрами T, T (фиг. 2), с плоско отшлифованными основаниями, которые по желанию могут быть более или менее глубоко опущены в стаканчики C и C ; это дает возможность удобно менять толщину слоя жидкости между нижней плоскостью цилиндров и дном стаканчика, т. е. именно толщину слоя, через который проникает свет.

Этот тип приборов весьма удобен. Для увеличения их чувствительности рекомендуют пользоваться иногда дымчатыми стеклами, поставленными на пути лучей, или прозрачными (желатиновыми или коллодионными) окрашенными пленками, подобранными так по отношению к цвету растворов, чтобы различной толщины слои давали через них не только разную силу света, но и заметно разное окрашивание. Прибор можно еще улучшить, усовершенствовав фотометрическую часть его; так, в последнее время к К. применили принцип фотометра (см.) Бунзена, в виде, данном ему Луммером и Бродгуном (фиг. 3).

Луч G 1 , идущий из A , попадает в призму P , которая кончается частью шаровой поверхности с пришлифованной фасеткой; этой фасеткой P прижимается к другой призме p. Пучок лучей G 1 отражается внутри призмы и та часть его, которая попадает на фасетку, следует дальше черезp в лупу L; остальные лучи рассеиваются, отражаясь от шаровой поверхности. Пучок G 2 отражается лишь от частей призмы p, не соприкасающихся с фасеткой, лучи же попадающие в место соприкосновения проходят насквозь вверх. Глаз видит в поле зрения светлое пятно на темном фоне или темное пятно на светлом, смотря по тому, сильнее ли пучок G 1 или G 2 ; исчезновение пятна указывает на равенство освещения.

Значительной точности достигла К. с устройством поляризационных колориметров. Первый подобный прибор построен Дюбоском, но наиболее известен поляризационный колориметр Крюсса. Основные части его те же, что у колориметра Дюбоска, но, как видно по фиг. 4, лучи из A и B , проходя через поляризующую призму выходят двумя смежными пучками, поляризованными в двух перпендикулярных плоскостях; перед лупой поставлена анализирующая призма Николя (см.).

Если вращать Николеву призму, то попеременно то одно поле, то другое будут темнеть, но перед призмой вставлена еще двойная кварцевая пластинка, одна половина которой вращает плоскость поляризации вправо, другая влево; линия деления кварца перпендикулярна к линии деления световых пучков, и поэтому поле зрения представляется разделенным на 4 части. Ввиду того, что кварц вращает плоскость поляризации неодинаково для разных лучей, все поля будут вообще казаться разноокрашенными, и лишь в одном положении Николевой призмы все поля будут казаться одинаково освещенными, и накрест лежащие поля одинаково окрашенными. Если сосуды A и B будут наполнены жидкостями, то равенство освещения и окраски нарушится и восстановится лишь тогда, когда слои A и B будут эквивалентны, т. е. обратное отношение их толщин будет равно отношению их концентраций. Этот колориметр значительно точнее ранее описанных, так как глаз весьма чувствителен к одновременным переменам освещения и окраски двух смежных полей. Бывают случаи, когда указанные колориметрические методы не приводят к цели -- это когда нужно определить присутствие и количество красящего вещества, прибавленного для фальсификации окрашенной жидкости (так иногда окраску красного вина улучшают прибавлением фуксина); общий цвет раствора фуксиновых солей тот же, что у природного красного вина, поэтому обыкновенные колориметрические методы не дают в этом случае ответа. Тогда прибегают к спектроколориметрии, т. е. к сравнению состава света, прошедшего через нормальную жидкость, с составом света, прошедшего через испытуемую. Для этой цели оба пучка света разлагаются спектроскопом и сравнивают силы света различных частей полученных двух спектров. Первый спектроколориметр построен Крюссом (подробнее см. Спектральный анализ, Спектрофотометр).

Применения К. Колориметрическими методами пользуются в аналитической химии тогда, когда требуется быстро определить количественное содержание в растворе окрашенного вещества, или когда содержание этого вещества столь незначительно, что обыкновенными аналитическими методами его трудно определить; при этом иногда содержащееся в растворе вещество само не окрашено, но может быть переведено в окрашенное соединение. Основные условия для успеха колориметрического опыта: точно известный состав нормальной жидкости, отсутствие мути в жидкостях и равенство их t°; глаз наблюдателя должен быть неутомленным, между отдельными опытами должно дать глазу отдохнуть. Точность определения от 0,1-1,0%, чувствительность во многих случаях чрезвычайно велика. Примеры применения К.: 1) определение содержания медного купороса в растворе; если раствор слишком слабый (мало окрашен), то прибавлением нашатырного спирта в избытке переводят нормальный и исследуемый растворы в более сильно окрашенные растворы аммиачно-медной соли. 2) Определение содержания хлора в воде; к воде прибавляют раствора азотнокислого серебра -- выделившееся хлористое серебро придает раствору опалесцирующий молочный цвет, который сравнивается с цветом нормального раствора хлористого натра (поваренной соли), также обработанного азотнокислым серебром. 3) Содержание красящего начала в красильных деревах, в индиго, в кошенили и т. д.

К. служит также для определения содержания в крови красящего начала -- гемоглобина, для каковой цели строят особенные приборы -- гемометры. В промышленности К. пользуются часто для определения достоинства различных продуктов по их окраске, например для определения достоинства (степени очистки) керосина, смазочных масел, пива, вина и т. д., также, на сахарных заводах для определения обесцвечивающей способности животного угля и т. д. Для этих целей выработан целый ряд специальных типов колориметров, служащих каждый для одного из упомянутых испытаний.

Размещено на Allbest.ru

...

Подобные документы

    Исследование спектров поглощения электромагнитного излучения молекулами различных веществ. Основные законы светопоглощения. Изучение методов молекулярного анализа: колориметрии, фотоколориметрии и спектрофотомерии. Колориметрическое определение нитрита.

    курсовая работа , добавлен 01.06.2015

    Составляющие тока заряжения. Способ осуществления выборки. Виды импульсных методов. Нормальная импульсная вольтамперометрия: влияние адсорбции, достоинства и недостатки, используемые приборы и материалы, отличительные черты от дифференциально-импульсной.

    контрольная работа , добавлен 07.06.2011

    Понятие точечного источника света. Законы освещенности, поглощения Бугера, коэффициент поглощения. Использование для измерения освещенности фотоэлемента, величина тока которого пропорциональна освещенности фотоэлемента. Обработка экспериментальных данных.

    лабораторная работа , добавлен 24.06.2015

    Оптические свойства полупроводников. Механизмы поглощения света и его виды. Методы определения коэффициента поглощения. Пример расчета спектральной зависимости коэффициента поглощения селективно поглощающего покрытия в видимой и ИК части спектра.

    реферат , добавлен 01.12.2010

    Теория атомно-абсорбционных измерений: излучение и поглощения света, понятие линии поглощения и коэффициента поглощения, контур линии поглощения. Принцип работы лазера. Описание работы гелий-неонового лазера. Лазеры на органических красителях.

    реферат , добавлен 03.10.2007

    Применение фотоколориметрии в биологии, медицине, фармации. Природа и основные характеристики оптического излучения, закономерности поглощения света веществом. Понятие об оптической плотности, светопропускании, светопоглощении. Схема фотометра КФК-3.

    методичка , добавлен 30.04.2014

    Устройство фотометрической головки. Световой поток и мощность источника света. Определение силы света, яркости. Принцип фотометрии. Сравнение освещенности двух поверхностей, создаваемой исследуемыми источниками света.

    лабораторная работа , добавлен 07.03.2007

    Сущность и физическое обоснование явления люминесценции как свечения вещества, возникающего после поглощения им энергии возбуждения, основные факторы, оказывающие на него непосредственное влияние. Люминесцентные источники света - газоразрядные лампы.

    реферат , добавлен 25.04.2014

    Значение света для жизни на Земле. Теории о развитии света. Характеристика волновых свойств света. Применение интерференции и дифракции света, представления о его природе. Фотонная молекула как новая форма материи, устройство среды ее существования.

    презентация , добавлен 07.05.2015

    Теоретические основы акустики. Рождение, характеристика, специфические особенности, измерение и коэффициент поглощения звука. Дифракция света на ультразвуке в анизотропной среде. Схемы и характеристики ультразвуковой аппаратуры. Применение ультразвука.

Колориметрия - это метод количественного определения содержания веществ в растворах , либо визуально , либо с помощью приборов, таких как колориметры .

Колориметрия может быть использована для количественного определения всех тех веществ, которые дают окрашенные растворы, или могут дать окрашенное растворимое соединение с помощью химической реакции. Колориметрические методы основываются на сравнении интенсивности окраски исследуемого раствора, изучаемого в пропущенном свете , с окраской эталонного раствора, содержащего строго определенное количество этого же окрашенного вещества, или же с дистиллированной водой.

Любопытна история возникновения колориметрии и фотометрии. Ю. А. Золотов упоминает, что Роберт Бойль (так же, как и некоторые ученые до него) использовал экстракт дубильных орешков, чтобы различить железо и медь в растворе. Однако, по-видимому, именно Бойль впервые заметил, что чем больше железа содержится в растворе, тем более интенсивна окраска последнего. Это был первый шаг к колориметрии. А первым инструментом колориметрии стали колориметры типа колориметра Дюбоска (1870) , которые использовались вплоть до недавнего времени .

Более совершенные приборы - спектрофотометры - отличаются возможностью исследования оптической плотности в широком диапазоне длин волн видимого спектра , а также в ИК и УФ -диапазонах, с меньшей дискретностью длины волны (с использованием монохроматора).

Фотоколориметры и спектрофотометры измеряют величину пропускания света при определенной длине волны света. Контроль (обычно дистиллированная вода или исходный материал без добавления реагентов) используется для калибровки устройства.

Колориметрия широко применяется в аналитической химии, в том числе для гидрохимического анализа, в частности - для количественного анализа содержания биогенных веществ в природных водах , для измерения , в медицине, а также в промышленности при контроле качества продукции.